1 / 10
00
Evaluate the integral∫2x2x+1dx\int_{ }^{ }\frac{2x^2}{x+1}dx∫x+12x2dx
x2−2xln∣4x∣+cx^2-2x\ln\left|4x\right|+cx2−2xln∣4x∣+c
4ln∣x∣+c4\ln\left|x\right|+c4ln∣x∣+c
x2−2x+2ln∣x+1∣+cx^2-2x+2\ln\left|x+1\right|+cx2−2x+2ln∣x+1∣+c
Complete this statement:
If f (x)=2Cos x and g(x)=ex then ∫[f(x) - g(x)] dx = ___________.
x22+ex+c\frac{x^2}{2}+e^x+c2x2+ex+c
2sinx−ex+c2\sin x-e^x+c2sinx−ex+c
2ex+x+c2e^x+x+c2ex+x+c
Find the antiderivative of ∫1x2+4x+8dx\int_{ }^{ }\frac{1}{x^2+4x+8}dx∫x2+4x+81dx
12x+24\frac{1}{2}\frac{x+2}{4}214x+2
ln∣x+1∣+1x+1+c\ln\left|x+1\right|+\frac{1}{x+1}+cln∣x+1∣+x+11+c
12 (x+2)2+c\frac{1}{2}\ \frac{\left(x+2\right)}{2}+c21 2(x+2)+c
Evaluate the integral∫x+1x−2dx\int_{ }^{ }\frac{x+1}{x-2}dx∫x−2x+1dx
(x+3)ln∣x+1∣+c\left(x+3\right)\ln\left|x+1\right|+c(x+3)ln∣x+1∣+c
(x−3)ln∣x+1∣+c\left(x-3\right)\ln\left|x+1\right|+c(x−3)ln∣x+1∣+c
x+ln∣x−2∣+cx+\ln\left|x-2\right|+cx+ln∣x−2∣+c
If f (x)=Cos x and g(x)=x3 then ∫[f(x) - g(x)] dx = ___________.
x22+sinx+c\frac{x^2}{2}+\sin x+c2x2+sinx+c
sinx+14x4+c\sin x+\frac{1}{4}x^4+csinx+41x4+c
sinx−14x4+c\sin x-\frac{1}{4}x^4+csinx−41x4+c
Find the antiderivative of ∫xx2+2x+1dx\int_{ }^{ }\frac{x}{x^2+2x+1}dx∫x2+2x+1xdx
ln∣x+1∣+c\ln\left|x+1\right|+cln∣x+1∣+c
−19x9+c-\frac{1}{9x^9}+c−9x91+c
If f (x)=ex and g(x)=x3 then ∫[f(x) - g(x)] dx =___________.
x22+ex+c\frac{x^2}{2}+e^x+c2x2+ex+c
ex−14x4+ce^x-\frac{1}{4}x^4+cex−41x4+c
ex+14x4+ce^x+\frac{1}{4}x^4+cex+41x4+c
Find the antiderivative of ∫2xx2+2dx\int_{ }^{ }\frac{2x}{x^2+2}dx∫x2+22xdx
ln∣x2+2∣+1x+c\ln\left|x^2+2\right|+\frac{1}{x}+cln∣∣x2+2∣∣+x1+c
ln∣x2+2∣+c\ln\left|x^2+2\right|+cln∣∣x2+2∣∣+c
ln∣x+1x∣+c\ln\left|\frac{x^{ }+1}{x}\right|+cln∣∣xx+1∣∣+c
Find the antiderivative of ∫(1−2x)x2(x+1)dx\int_{ }^{ }\frac{\left(1-2x\right)}{x^2\left(x+1\right)}dx∫x2(x+1)(1−2x)dx
ln∣x+1 x∣+1x+c\ln\left|\frac{x+1\ }{x}\right|+\frac{1}{x}+cln∣∣xx+1 ∣∣+x1+c
(1−2x)2(x−2)2+c\frac{\left(1-2x\right)}{2\left(x-2\right)^2}+c2(x−2)2(1−2x)+c
ln∣(x+1)x∣−1x+c\ln\left|\frac{\left(x+1\right)}{x}\right|-\frac{1}{x}+cln∣∣x(x+1)∣∣−x1+c
If f (x)=Cos x and g(x)=loglogx then ∫[f(x) -g(x)] dx = ___________.
2x2cosx−xloglogx+c2x^2\cos x-x\log\log x+c2x2cosx−xloglogx+c
sinx+xloglogx−x+c\sin x+x\log\log x-x+csinx+xloglogx−x+c
cosx−xloglogx+x+c\cos x-x\log\log x+x+ccosx−xloglogx+x+c
It is done.