Questions

1 / 10

Time
Score

00

Rational function Properties

Consider the function f(x)=x+12x1. What is the horizontal asymptote of the function ?f(x)=\frac{x+1}{2x-1}.\ What\ is\ the\ horizontal\ asymptote\ of\ the\ function\ ?

Consider the function f(x)=1x. What is the vertical asymptote of the function ?f(x)=\frac{1}{x}.\ What\ is\ the\ vertical\ asymptote\ of\ the\ function\ ?

The horizontal asymptote of a rational function is the leading coefficients of the numerator and denominator if the degree of the denominator isThe\ horizontal\ asymptote\ of\ a\ rational\ function\ is\ the\ leading\ coefficients\ of\ the\ numerator\ and\ deno\min ator\ if\ the\ \deg ree\ of\ the\ deno\min ator\ is ___________ the degree of the numerator.the\ \deg ree\ of\ the\ numerator.

If the horizontal asymptote of a rational function is y=0 , thedegree of the denominator isIf\ the\ horizontal\ asymptote\ of\ a\ rational\ function\ is\ y=0\ ,\ the\deg ree\ of\ the\ deno\min ator\ is ___________ the degree of the numerator.the\ \deg ree\ of\ the\ numerator.

If the degree of the denominator is greater than the degree of the numerator, then y=0 is a___________asymptote.

The oblique asymptote of a rational function is the quotient of the numerator and denominator if the degree to the denominator isThe\ oblique\ asymptote\ of\ a\ rational\ function\ is\ the\ quotient\ of\ the\ numerator\ and\ deno\min ator\ if\ the\ \deg ree\ to\ the\ deno\min ator\ is ___________ thedegree of the numerator.the\deg ree\ of\ the\ numerator.

 Fill in the Blank:

The subtraction of two rational number 1325\frac{1}{3}-\frac{2}{5} = __________________ .

Fill in the Blank

1(x2)\frac{1}{\left(x-2\right)}  is a rational function. the degree of the numerator can be __________,

Fill in the Blank:

The multiplication of two rational number (58) ÷ (34)\left(\frac{5}{8}\right)\ \div\ \left(\frac{3}{4}\right) = __________________

Fill in the Blank:

The graph of this f(x)=a(xh)f\left(x\right)=\frac{a}{\left(x-h\right)} + k+\ k s__________.